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SUMMARY
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The origin of '"secular" behavior for the nonlinear cold
electronplasma equations is studied. The equations involved
are closelyrelated to the Klein-Gordon equation witha small
nonlinear term. A method is developed for arriving at per-
turbation theoretic solutions of this equation, and the method
is then applied to the case of the higher order effects of an
electromagnetic wave propagating in the cold electron
plasma. An explicit expression for the second order fre-

quency shift is calculated. ,4@-\/
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SECULAR AND NON-SECULAR BEHAVIOR
FOR THE COLD PLASMA EQUATIONS®

by
David Montgomery' and Derek A. Tidman'
Goddard Space Flight Center

INTRODUCTION

When attempts are made to calculate the behavior of nonlinear mechanical systems in per-
turbation theory which goes beyond the linearized approximation, the difficulty of "secular"
behavior often (though by no means always) appears. The higher orders contain, in addition to
trigonometric terms, time-proportional or ''secular" terms. The unbounded character of these
terms soon invalidates the perturbation theoretic assumptions of smallness on which they were
derived.

A systematic program for doing a type of perturbation theory that is free of secular terms in
the case of the harmonic oscillator equation with a "small' nonlinear term was given some time
ago by Krylov and Bogolyubov (Reference 1), and later refined and mathematically justified by
Bogolyubov and Mitropolskii (Reference 2).** Recently, considerable interest has arisen in
modifying these techniques to deal with partial differential and differentio-integral equations,
especially in connection with the work of Frieman (Reference 3) and Sandri (Reference4). Earlier
calculations, which are more closely related to this work, were made by Jackson (Reference 5)
and Sturrock (Reference 6).f

The system treated here, a partial differential equation, is considerably simpler than those
described in References 3 and 4. It is nontheless believed to be of value in that it illuminates,
in a relatively uncluttered way, some new features which emerge as a consequence of its being

a partial differential, rather than an ordinary differential, system.

The equation treated by Bogolyubov and Mitropolskii is

d? dx
(m +w2) x(t) = eF(x, a?) (1)

*To be published in Physics of Fiuds.

fPermanent address: University of Maryland, College Park, Maryland.
**A quite similar technique was put forward independently by M. V. Lighthill: *A Technique for Rendering Approximate Solutions to
Physical Problems Uniformly Valid,"” Pkil. Mag. Series 7, 40(311):1179-1201, December 1949.
iSee also Dolph, C. L., “*A Unified Theory of the Nonlinear Oscillations of a Cold Plasma,”’ J. Math. Anal. Appl. 5(1):94-118,
August 1962.



where ¢ is a formal expansion parameter (eventually to be set equal to one) written to indicate

the relative "smallness" of the right hand side; F(x, dx/dt) is a known nonlinear functional of x
and dx/dt; and «? is a constant.

We shall examine the equation

52 32 . f o
(a—a_ +x’) I () @)

where ¢ is again the formal expansion parameter; F is again a known function (which depends on
the problem under consideration); and c? and A2 are non-negative real constants.

The immediate motivation for studying Equation 2 was that the equations of motion for a ''cold"
electron plasma in a uniform positive background may be put in this form, component by compo-
nent. But it also has the value of being sufficiently simple that explicit zeroth order (e = 0)
solutions of it can be constructed which both do and do not lead to secular behavior when a
straightforward attempt is made to extend them to higher order in ¢. This simple example makes
clear one difference between Equation 1 and an equation of the type 2. In general, for a given F,
any ¢ = 0 solution of Equation 1 will give rise to secularity when extended to higher order, whereas
the conditions under which Equation 2 gives rise to secular behavior beyond the first order depend
sensitively upon which ¢ = 0 solution it is that one wishes to extend to higher order in ¢, even for
a givenF.

We shall first give an example of both secular and non-secular behavior for Equation 2, and
show how the difficulties may be remedied in the secular case. Then we shall give a simple
physical example, that of the second order behavior of a nonlinear electromagnetic wave in a
'cold'" electron plasma.

THE KLEIN-GORDON EQUATION WITH A SMALL NONLINEAR TERM

A Single Monochromatic Wave

We shall first consider perturbations about the following ¢ = 0 solution to Equation 2:
f = acos (Kox -t +q§) \ (3)
where

w02 = C2Ko2 + A2 (4)

and, for ¢ =0, the quantities K,, w,, a, and ¢ are constants.

This happens to be a situation for which secularity arises, so we shall set up the necessary
formalism for handling it from the beginning. Following Reference 2, we seek a solution to




Equation 2 of the form
f = acosy +euy(a, ) + eluya, Pp) + -, (5)
where the amplitude a is now determined as a "'slowly-varying' function of x and t by the relations

da

ot - €A(a) tePA(a) + (6a)
da
= - €D (a) + eznz(a) + oo (6b)

Here, y is a new "'phase’ variable, to be chosen to coincide with the phase of Equation 3 fore=0:

ey

St F @y t+ €Bj(a) + esz(a) + oo (7a)

A 2 s

r Ky + Ci(a) + €2Cy(a) + -+ . (7b)
The (as yet undetermined) functions A,A,, -+, B,, B,, -~-, C,, C,, -*-,D,, D,, ---, are to

be chosen so as to render the solution (5) free from secular terms. Here, "secular' must be
interpreted to mean y-proportional; i.e., solutions can break down because of linear growth in x
as well as in t. The functions u,, u,, '--, are to be periodic iny.

The program is to express the various terms in Equation 2, by means of the relations (5), (6),
and (7), in terms of the u's, A's, B's, C's, and D's, as functions of a and y. For brevity's sake, we
shall first only go to 0(¢), though in principle the method may be carried to any order in ¢. Gen-
erally, the algebra becomes prohibitive beyond 0 (ez). Hereafter, the notation "+ ---' will mean
""of higher order in ¢".

The result of differentiating f with respect to x and t and using (6) and (7) is:

= . Cz__; +A2f = acos\p(_woz +c2K02+>\2)

Bzul
+ e<\? N +u,) + 2(“’0A1+C2K0D1) siny
+ 2a(w, By +c? K, C,) cos \/J}
+ 0(62) . (8)

The zeroth order part of (8) vanishes identically, by virtue of (4). The coefficient of ¢ is to be
equated to F(f, 9f /ot, of /ox), with the arguments replaced by their zeroth order values:

f ~acosy ,



9f /3t — wya siny ,

of/ox = ~Kyasiny.,

For the purpose of finding u, it is most convenient to write F as a Fourier series iny:

F(acos¢r, w, asiny, -Koasin\/,v) = go(a) ¢ z: (gn(a) cosny + f_(a) sinm,b) . (9

The f_(a) and g_(a) are known functions of the amplitude a, determined by the functional form of F.
We shall make the assumption—always satisfied in practice—that the f (a) and g_(a) go to zero,
as a goes to zero, at least as fastas 0 (az) .

The equation for u, may be written as:

32 .
>\2<¥ + 1) u, = gyla) t [fl(a) ~ 2w, - 2°2K0Dl] siny

»

+ [gl(a) - 2aw B, = 2ac2K0C1] cosy

@®

+ Z (gn(a) cosnyt f _(a) sin m/;) . (10)

n

This is, effectively, an ordinary differential equation in ¢ of a standard type. Its solution
contains terms proportional to ¢ siny and y cosy unless the coefficients of siny and cosy on the
right hand side of (10) vanish. If they vanish, then the general solution may be found in the form

u, = ve(a) * z(vn(a) cosny tw (a) sinmp) . (11)

n=1

Our objective is to find a solution free from y-proportional terms. This impels us to choose
A, B, C;, D, so that

2(w0A1+°2KoDl) = £, (12a)

"

2a(wyB, + XK, C,) = g,(a) . (12b)

Two more relations may be deduced from the conditions

2% 2%
dtox T Ox9dt
and
9%2a _  2%a
9t dx ~  ox ot




Reference to (6) and (7) shows that, to lowest significant order, these become

dC, dB,

AL @& = Dia (13a)
dD, dA,

Ay da = D@ - (13b)

Equations 12 and 13 are four relations for the four unknowns A, B,, C,, D,, and once they
have been obtained, (10) can be solved in a straightforward way by means of (11), andu, will con-
tain no y -proportional terms. The function B, can be interpreted as a "frequency shift" and C, as
a "wave number shift."

However, it is impossible to solve (12) and (13) completely without specifying the physical
problem in more detail. For instance, if we wish to work a poundary value problem in which f is
required to oscillate sinusoidally at a given x for all t, we do not expect a or y to vary with t, and
B, and A, may be set equal to zero. This leaves

c B gl(a)
1 2¢2K,a (14a)
as the "wave number shift' and
D fl(a)
1 2¢2K, (14b)

If we are interested in an initial value problem in which a pure sine wave is given for all x at
t = 0, we may correspondingly set C, and D, equal to zero and solve for A, and B,. Other choices
are necessitated by still other problems. (Note in passing that in both cases, the corrections
approach zero as a approaches zero, as they must in order to make physical sense.)

All this has been for a completely general F, imagined to contain all harmonies in y. In prac-
tice, it often happens that F contains only a few harmonics. Observe that secularity may not arise
for some forms of the nonlinear term. Thus, if F is proportional to (f)? or fof/ox, say, then f (a)
and g,(a) will both vanish; and in this order, we may set A, B,, C,, D,, all identically zero, which
is equivalent to a completely straightforward kind of perturbation theory. On the other hand, if
we were to have F proportional to (f)3, f,(a) is still zero, but g,(a) = 3a3/4 and a straightforward
perturbation theory no longer works. The occurrence of secularity thus depends, in a given order,
on the particular form of the nonlinear term. In the following sub-section, we shall show that, for
a given F secularity likewise may or may not appear, depending on the choice of the ¢ = 0 solution.

To close this discussion, we give the full solution for u,(a,¢) of Equation 11. If we make
the (arbitrary) choice that all the first harmonic shall be collected in lowest order, we may choose



v,(a) = w,(a) = 0. Thenforn71,

g,(a)
a(®) T arey)
15
o) (152)
Va2 F (et

f.(a) 1 sinny
= — F(a cos Y, wgasiny, -Koasinl//) dy . (15b)
g,(a) 0 cos ny

When the phenomenon of secularity occurs, one must go to one higher order in ¢ to get cor-
rections to f which are uniformly valid through terms of 0(e) for changes in x and t of 0(1/¢),
and so the solution (15) is not of great interest by itself (Reference 2). However, the expressions
such-as (14) for frequency and wave number shifts are accurate to 0(¢), and are usually more
accessible to measurement than the expression for u,, in any case.

Two Coupled Monochromatic Waves of Differing Frequencies
We now proceed to the case in which Equation 2 has the ¢ = 0 solution
f = a[cos(le -t +¢;) t cos(Kyx - w,t + ¢2)] , (16)
where
1

(4)2 - CZKI2 - }\2 = w22 - C2K22 - >\2 = 0 , (17)

but where there is not necessarily any other relationship between «,, K, and «,, K, . If we were to
do a straightforward perturbation theory, assuming

£ = £f(0) + ef (1) 4 2f(D + -+ | (18)

with f(® given by (16), it is clear that we can always find a secularity-free perturbation theoretic
solution to (2) of the form

[+ 4]

f(m) = % fr(:)(a) exp i[r(le -t + ¢1) + s(K2x - w,t ¢2)] (19)

except when there happen to exist two integers r, s such that
A2 (-F2-52+1) - 275 (ww,-cK,) = 0. (20)

When (20) is fulfilled f(V), like the u; of Equation 10, will in general contain terms propor-
tional to the phases, as well as trigonometric terms.




For a randomly selected pair of values «,, K, and «,, K,, there will exist no integerst, s
which fulfill (20), and there is no necessity for the Bogolyubov techniques. When, on the other
hand, two such integers 7, 5, do exist [the relation (20) will also hold for -7, -5, of course], then
the Bogolyubov techniques are called for. One method of introducing them is the following, though
it is not the only method* Seek a solution of the form

f = a(cosxpl+cos¢2) + Eul(a"l’xv‘r/’z) + e

where now the amplitude a and the phases ¢, and y, develop according to:

~
3
—.£— = eA(a'¢1'¢2) 4 mee R
3
Ka = eB(a,¢l,¢2) £ oo
> (21)
1 Y12 _
‘ 3t C “wpa v eCynanddy) b
‘ % o B
ox = K, t €D1.2(a'¢1v‘/’2) oo J

The left hand side of (2) may again be computed, by using the relations (21), to give

92f 92f
Stz c? ) + A = a [(-wlz +c2K12+>\2) cosy, + (— w22 +c2K22+)\2) cosx,bz]

+

o, Cy
eqsiny, | 2wA+aw, a/ﬁ“ + awz_—&,bz-

D, ) D, )
+ 2c¢%K,B + aczKlW + ac Kz—&//j + siny, | 20,A
1

oC, oC, D, BDZ
+ awl‘g#—l—+ aw, 3#2 + 2c2K2B + aczl(l_a?l' + ac2K2_372'

%A A B
+ cos y, [Zawlcl “w, ‘—wl - w, ——3‘#2 + Zaczl(lD1 —czK1 3,

9B 2A oA
- ¢k, *ap—z} + cos y, [Zaa)zc2 SOy, T@2 e, 2c2ak,D,

3% 3%

9B 3B 21 1

- ¢k - ¢ :} + e< A2 + T +u
1 a‘/’l 2 &,{zz l2 3\/»'22 1

2
%y,

* 2[“’1“’2 ’C2K1K2] W} +o(e) . (22)

e TITEERe . . . ~An
*For simplicity, we assume only one independent pair of such integers, r, s, exists.




The zeroth order part of (22) vanishes identically. The first order part now must be equated

to eFI:a(cos Y, +cos ‘l’z) , a(‘a;1 siny, tw, sin l/JZ) y a(K1 siny, *K, sin \/42)] . It is most convenient to
write this as a complex Fourier series,

+

F = an(a)ei("‘\"ﬁ"‘f’z)
= (23)

where an* =F_, -, Since we deal only with real quantities. Calling everything in the first set of
braces in Equation 22 " G(a, A, B, C,,, Dm)," we may finally write the equation for u, .as

, 3%, %, %,
—_— . | —_—
A 2 + 2 u 2(‘”1"“2 ¢ Kle) EYIEYS

+0

= - G(a,A, B, C,,,D + E Fm(a)ei("‘l‘l““‘l’z).
( 1,2 1.2) (24)

This equation, analogously to (10), has a readily obtainable secularity-free solution of the form
uy (\pl’ lj/zv a) = u (a)e i (""bl+"‘l’2) (25)

m, NE=0

if and only if the functions A, B, C,,D,,, are chosen to depend on |, and |y, in such a manner
that:

§ dy, § dp, e (Mr*¥a)G(a, A, B, C,,. D, ,) ~F;z(a) = 0. (26)

Since (26) involves complex numbers, it really amounts to two real equations upon a, B, C,.» D,
which are linear partial differential equations with periodic coefficients.! We need not write them
down in full detail, since they are most cumbersome, and not of interest for our purposes here.

From the requirements that
3%2a/3x 3t = d%a/dt 3x , B"\/Jl /X3t = awl_z/at x

three additional conditions may be adduced. They are:

(AL A _ ( B 3B
VRS vy ©r 3, t @23y, ) (27a)
BDI BDI BCI acl
K, 55 +tK, 557 = =\, 3757 +w, 37
%, t X3, 13, F e, ) (27b)
8D2 3D2 , BCZ 3C2
Kid, " K3y, © \@ 3, ey, (27¢)
tWe may consider A, B, - - - - as being expressed as Fourier series in l,lJl, \,02, in which case (26) leads to algebraic conditions on the

Fourier coefficients.




Satisfaction of these five relations on the six quantities A, B, C, ,, D, ,, then, will guarantee that the
solution shall be secularity-free. It is clear that considerable latitude is left to choose the func-
tions conveniently for whatever problem is under consideration. The point to be emphasized,
however, is that secularity is by no means inherent in the equation to be studied, or in the form of
the interaction term. Nor does its origin necessarily have a simple physical interpretation as it
does for Equation 1, where the presence of secular terms is simply interpretable as a resonance
between one of the frequencies present in the nonlinear coupling term and one of the natural fre-
quencies of the system. It would take considerably more insight to apprehend the physical meaning
of Equation 20, or any connection it might have with the secularity condition for Equation 10.

THE COLD ELECTRON PLASMA

Suppose we consider a cold (no thermal motions) electron plasma of equilibrium number
density n,, moving in a uniform positive background, assumed immobile. If we make a perturba-
tion about a uniform, field-free equilibrium, the appropriate variables for describing the system
are:

v = electron velocity,

= e(ny +n(X, 1)) electron charge density,

+en, = positive background charge density,

E, B = electric and magnetic fields.

All these will be treated as perturbations—i.e., as first order in the amplitude—except for n,.

The dynamical equations are well known:

on 9 - 2 - -
3t * a0 (W) Haxngd) = 0, (28a)
¥ L D . i(.. 1.
2TV ®mY T T E+CVXB)' (28b)
1 3B 3 o
Tt - THXE. (28¢)
138 _ 3 = e -
et = mx Bt ¢ (ng+n)V . (28d)
3 = .
% " E 7 4men (29a)
3 -
—Bjx.'B = 0. (29b)

Equations 29 can be regarded as initial conditions; once fulfilled, they are preserved by
Equations 28.



A small amount of algebraic juggling shows that Equations 28 lead to

2 , 9 3 o 2 =
?E+c E X\ xE/ tw E

pe
-~ 9 o - =)0 o
= =€ 4fne|:n0(v' 59 v+m_ec v x B)— 3t (nv)], (30a)

2?2 3B ., D (a aﬁ‘) , 3B

Szt t e ax (3% oe) * 9 ot

-
) ev.

-, .9 . ev 2 0 o
= e[4ﬂenoc 3% X <V' 3% V1t me xB) —4mec 3F % 3¢ (nv)]. (30b)

The formal expansion parameter ¢ has been written on the right hand side of Equations 30 only to
remind us that these terms are ''small" in the sense of being second order in the amplitude. The
quantity wpi is 4m0e2/m, the plasma frequency.

If we now restrict ourselves to disturbances which are functions of only one spatial dimension
(x, say), we may write the expression (30a) in the form

2 2 2

(3 met o et reth ) B = <5, (31)
where 8, ;=0 unless i=1, and CPE H §, represents the i*" component of the right hand side
of (30a). Since (30b) is just the curl of (30a), it is not necessary to write it in the form of (31).
It matters not at all that we have not bothered to express the right hand side of (30a) as a func-
tion of Ealone, since we always need the values of the quantities which enter into ¥, to one lower
order than those under consideration on the left hand side of (30a); and those will be shown to be
obtainable in each order directly from (28).

The ¢ = 0 solution to (31) is just the standard cold-plasma set of field-free normal modes,
which is well understood (Reference 7). It will be apparent that each component of (31) has the
form of Equation 2 and is therefore immediately susceptible to the methods already discussed.
Equation 31 represents a generalization of the equation treated by Jackson (Reference 5), which,
however, does not exhibit all the features of (31) because of the absence of x-derivatives on the
left hand side in the purely electrostatic case, and of the fact that the x and t dependences separate.

The number of possibilities from (31) is very large, due to the wide range of choices for the
e = 0 solution. The simplest case—beyond that of a pure electrostatic oscillation (Refer-
ence 5)—is that of a pure transverse, linearly polarized, electromagnetic wave. We shall extend
this solution to the next two orders above the linear approximation in the following paragraphs.

10




- A

Calling our base vectors &, & , &,, the appropriate zeroth order solution is

E = E @& cos(kox-wot) ,

0y
- cko
S—— -
B = @, EOelcos (kox wot)
eE,
v = Eo €, sin (kox-wot)
n =20
where
2 = 2 21, 2
@y wpe + ¢ kO

This zeroth order solution for E is conveniently written:
E, = a[<¢>i eilkomeet) + ¢ ¢ e ("o““’o‘):l

where ¢ is a column vector

©
I
o N~ o

and a = E; is the amplitude.

The results of Section II suggest that we seek a solution of the form

E, = afp,e¥+¢ e ™)+ cu®(a,y) + e2uPD(ay) + ---

1

where now the amplitude a and phase y are to vary in xand t according to

2a 2 )
ot T €A(a) t etA(a) o,

3

% = EDl(a) + €2D2(a) + e

e f
St = "o t €Bj(a) + €2By(a) t +c-

i/'x = k, +eC(a) + €2Cy(a) *+ *-- ,

with the functions A, B,, ---, as yet undetermined.

(32)

(33)

(34)

(35)

(36)

11



The left hand side of (31), expressed in terms of these functions, becomes, for i= 1,

32 3%u, (D .
<3t2 +w92"'> E, = ey EVE +wP2e u D+ 2(_ iwgh, + ac"0131)‘751‘3”p
+ 2(iwgA, + 2w B,) ¢ e‘i\"} +0(e?) ; (37)

and for i = 20r 3,
32 32 3%u M
<W - c? 3)-(7 +wpze> E, = e {UF&( w2 tu®

+ 2(-iw A +awB, - ic?k D, +ac2Ck ) ¢, ei¥

+ 2 (iwgA, +awB, +ic?k D, +ac?C k,) ¢, e"i"’}
+ 0(62) . (38)

These three expressions are to be equated to the three components of the right hand sides of
(31), with the quantities v, E, B, n replaced by their values (32), and with the substitution E, ~ a.
The result can be conveniently written as a Fourier series

¥, 0= Z Qi(m,a)ei""’ s
2 (39)

where the ¢, (m,a) are known functionals of a.

Suppose we now consider whether secular terms can arise. We seek the solution for u ("in
the form

11:(1) = zui(l)(m’a) g‘lm‘p
(40)

-

The equation for u (" then becomes

[(— m? + 1) w? +mis (“’p2= -woz):l u.M(m,a) ein¥

i -0

= - 2(-iwA +aw B, ~ic’k(D, + ac’C k) ¢; ei¥

- 2(iwgA, + awyB, +ic%k D, +ac?Cik,) ¢," ™V

+ @, (m,a) ein¥ (41)

(we have made use of ¢, = 0). e

12




We may always solve (41) for u ()(m, a) with the absence of y-proportional terms, except when

a coefficient of u*)(m, a,jon the left hand side of (41) vanishes for some m. Since ol > w2 it is
clear that this can only occur when m = #1, and only in the components i = 2or 3. However, a
term-by-term inspection of ¢,(m,a) reveals that for i = 2 or 3, the quantities ¢,(m,a) vanish
identically for the choice (33) of the zeroth order values. Thus a result emerges which would
have been hard to guess from the original set of equations (28). Secular behavior cannot arise

in second order for this case, and we may set A, = B, = C, = D, = 0, and solve in a completely
straightforward way for u (D (m,a):

o _ ®, (m,a)
u,(V(m, a) Caz+ N2 tm?s, 02 ~wd) LIS
uM(+1,a) = 0. (42)

The calculation of the coefficients of the Fourier coefficients is a matter of simple algebra,
and we may write down in full the first correction to the linear solution (32):

eay o . _ ekowpi sin2(kox-mot) .
u = E® = g2 2 2 2y ©
x ?
2w (32 +4cky)
B = o,
2 -
o = £ e nok02 cos2(kox wot)
| - = ’
0 m2w02 (3«;1;"e +4c2k°2)
ek cos 2k x-w_ t
;;(1) - E2 o _ ( ° 0 )é‘
0 mly (3(4;2 + 4¢c2k 2) x (43)
0 pe -0

The only qualitatively new feature which shows up in 0(¢), then, is a longitudinal electric
field. It is only in 0{ec?) that secularity manifests itself and it becomes necessary to use the
Bogolyubov methods. Making use of the 0(¢) solution we have just computed, we may write down
the 0(e2) part of the left hand side of (31) in terms of the A's, B's, etc. We shall need:

%, J%E,
-2 — 4 +w?2 E
‘at2 ¢ x2 wpe i
0(62)part

ELTREY
21(,.2 =2 2 1 2., (2
€ (a'O ¢ ko) NZ + wpeui( )

+ (— 2iw,A, * 2aw B, - 2ikoczD2 + 2a<:2koC2)<15i el¥
+ (ZiwoAz +2awB, + 2ik c?D, + 2ac2k°Cz) ¢’ e'i‘{l . (44)
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It is also a simple matter to compute the 0 (c?) part of the right hand side of (31) from (43)
and (32). The result expressed in terms of aand vy, is

wpikozeza%i’2 - ' ' A
?;] o(ez)pa” - 4eo 2m? (3‘“',,2;3 + 4c2k02) {3 (e31¢ + e-sup) - (eup + e'”/’) }

(45)

Since the only nonvanishing component of (45) is in the 2-direction (y-direction), the only

nonvanishing component of u(® will also be u,(®. The equation to be solved in the 0 (¢?) approx-
imation is, therefore:

82u2(2)
+ w 2U(2) =

a¢2 pe 2

(‘%2 -c’k 02)

(= 2iwgA, + 2aw B, - 2ik c?D, + 2ak c2C,) ¢, el¥
= (2iwoA, + 220 B, + 2ik c?D, + 2ac?k C, ) ¢, eIV

21, 2.2,3
(‘“pekoe a

+
22 .2 2y, 2
4w0m (3upe+4c ko

) [3 (esw’ + e°3i‘l’) - (ei"’ + e'i‘/’):l .

(46)
We may find a solution to (46) of the form
u2(2)(a,¢) = Z ufD(a,myein )

which is free of y-proportional terms, if and only if the coefficients of e and e on the right
hand side of (46) vanish. This gives us two conditions on A,, B,, C,, D,, which are algebraic
relations. Two more, analogous to Equations 13, are given by the requirements that

322 _  32a
otox  ox9ot
and
%Y 3%
Jdtox ~  oxot
they are:
dA, dp,
D, 3@ = A, dm (48a)
dB, dc,
Do d@@ = Ay @ - (48b)
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Let us now specialize the problem to one in which the spatial periodicity and amplitude are
given and we are to calculate the "frequency shift."” This means setting C, = D, = 0. The condi-
tion that the coefficientsof e and e”* on the right hand side of (46) vanish reduces to the equation

21 2.2,.3
a.,pekoea

an? ol (362 + ac’ky) (49)

(i“’oAz - a“’oBz)

and its complex conjugate relation. We may therefore find A, = 0, and the frequency shift A«
becomes (substituting E, for the amplitude a):

2,2 .2 2
eko ape EO

2 4m?w (3(4;‘)2e + 4czk02) (50)

It does not seem worthwhile to write down the 0(e2?) corrections to E, B, ¥, and n, though it would
be easy to do so. In any experiment one might imagine, Equation 50 would probably be the easiest
quantity to measure.

It is possible to calculate the frequency shift of a standing electromagnetic wave of given
periodicity as well. One assumes a linearly polarized standing wave solution for (31) in lowest
order and writes

E, = a; sink, xcosy + eu; (1) (a, ¢, x) + €?u, (P (a, ¥, x) + ---

Then, only the t-dependence of the phase variable and amplitude are expanded:

da

qr - fA(a) + ezAz(a) Foeee
d
g‘tﬁ = w, * €B,(a) + €?By(a) + ‘-

In lowest significant order, the frequency shift turns out to be exactly one eighth of the result given
in Equation (50).

DISCUSSION

We have given a technique for obtaining uniformly valid, perturbation theoretic solutions to the
Klein-Gordon equation with a small nonlinear term. The method has been applied to calculate the
second order frequency shift of an electromagnetic wave in a cold electron plasma. The smallness
of the expression (50) for attainable parameters is an indication of just how good an approximation
the linear theory is at these frequencies.
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It is not to be inferred, however, that the method adapts itself readily to all partial differential
equations. For instance, the reader can easily convince himself that it fails for a nonlinear sound
wave described by the Euler equations. (It appears to fail in all situations for which the ¢ = 0
equation is a wave equation, (32/3t2 - c2a2/ax2) f = 0.) The physical reason is that, due to a
steepening of the exact nonlinear wave front—obtainable from the Riemann invariants—a vertical
tangent develops after a time of 0(1/ the amplitude). This destroys any regularity properties
which may have existed in the original wave profile. Since the exact solution does not remain
""close' to the ¢ = 0 solution in any sense, after a time of order 1/¢, it is not surprising that per-
turbation theory is of little use beyond this time.

(Manuscript received September 1963)
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